The #1 Monster Quest : AI tutor AI Learning Service

Connect With Us on Social Media

Monster Quest | AI tutorMonster Quest | AI tutorMonster Quest | AI tutor

Monster Quest | AI tutor The No.1 Homework Finishing Free App

Numbers and Algebra

Basic Number Theory - Prime Numbers and Factorization | AI tutor The No.1 Homework Finishing Free App

Q.01

'Explain the Factor Theorem.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.02

'Prove using the binomial theorem that the following equation holds true: { }_{n} C_{0}+{ }_{n} C_{1}+{ }_{n} C_{2}+⋯+{ }_{n} C_{n}=2^n'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.03

'Common divisor (polynomials): A polynomial that divides evenly into all given polynomials, of two or more polynomials.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.04

'(1) Prove that if m is a prime number, then d_{m}=m.\n(2) Prove by mathematical induction that for all natural numbers k, k^m-k is divisible by d_{m}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.05

'Prove that for all natural numbers n, the expression 4^{2n+1} + 3^{n+2} is a multiple of 13.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.06

'Mathematics II\n(1) From (α-2)(α+3)=0, we get α=2,-3\n(2) From α=2, k=8 and from α=-3, k=-27\nTherefore k=8,-27'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.07

'Practice (1) Prove that when n is a natural number, 4^(2n+1) + 3^(n+2) is a multiple of 13.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.08

'(1) Let k3 k ^ 3 divided by n n have a quotient of q q and a remainder of r r , then k3=qn+r(0rn1) k ^ 3 = qn + r (0≤r≤n-1) When n n and k k are coprime, n n and k3 k ^ 3 are also coprime. Therefore, r0 r≠0 , so 1rn1 1≤r≤n-1 Dividing both sides of (1) by n n gives frack3n=q+fracrn \\frac{k ^ 3}{n} = q + \\frac{r}{n} From 1rn1 1≤r≤n-1 , we know that frac1nfracrn1frac1n \\frac{1}{n}≤\\frac{r}{n}≤1-\\frac{1}{n} . Therefore, 0 < fracrn \\frac{r}{n} < 1, hence left[frack3nright]=left[q+fracrnright]=q \\left[\\frac{k ^ 3}{n}\\right] = \\left[q + \\frac{r}{n}\\right] = q '

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.09

'(2) Prove that for all k, k^m - k is divisible by d_m. [1] When k=1, 1^m - 1 = 0 and d_m ≠ 0, so 0 is divisible by d_m. Therefore, (1) holds. [2] Assuming that (1) holds for k=l, that is, l^m - l is divisible by d_m. Considering k=l+1, (l+1)^m - (l+1) ={m C_0 l^m + m C_1 l^(m-1) + m C_2 l^(m-2) + ... + m C_m - (l+1)} = {l^m - l} + {m C_1 l^(m-1) + m C_2 l^(m-2) + ... + m C_m-1 l} From the assumption, l^m - l is divisible by d_m. Also, d_m is the greatest common divisor of {m C_1, m C_2, ..., m C_(m-1)}, so these terms are also divisible by d_m. Therefore, (l+1)^m - (l+1) is divisible by d_m. Hence, when k=l+1, (1) also holds. From [1], [2], it can be concluded that (1) holds for all natural numbers k.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.10

'Let p be a prime number and r be a positive integer, prove the following:\n(1) If x₁, x₂, ..., xᵣ are positive integers, then \\( \\left(x_{1}+x_{2}+\\cdots+x_{r}\\right)^{p}-\\left(x_{1}{ }^{p}+x_{2}^{p}+\\cdots+x_{r}^{p}\\right) \\) is divisible by p.\n(2) If r is not divisible by p, then \ r^{p-1}-1 \ is divisible by p.\n[Similar to Osaka University]'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.11

'Prove the following when p is a prime number:\n(1) For natural numbers k that satisfy 1 ≤ k ≤ p-1, p_kC_k is a multiple of p.\n(2) 2^p-2 is a multiple of force.\n[Tohoku Gakuin University]'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.12

"Let's define a word of length n as three letters (a, b, c) arranged horizontally n times. Here, n=1,2,3, … etc. For example, abbaca and caab are both different words of length 4. Among such words of length n, let's denote the ones containing an odd number of a's as xn, and the rest as yn. Find the values of xn and yn."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.13

'In exercise 55 (1) [1], when m=2, d_2 is the largest natural number that divides the binomial coefficient {2 C_1} = 2, so d_2=2, and d_m=m holds true. [2] When m is a prime number greater than or equal to 3, {m C_1} = m, therefore it is sufficient to show that {m C_2, m C_3, ..., m C_m - 1} are multiples of m. For k=2,3,…,m-1, {m C_k} = (m!) / (k!(m-k)!) = (m/k) * ((m-1)! / (k-1)!(m-k)!) = (m/k) * {m-1 C_k-1} thus, k * {m C_k} = m * {m-1 C_k-1}. Since m is a prime number greater than or equal to 3, and 2 ≤ k ≤ m-1, k and m are coprime. Hence, {m C_k} is a multiple of m. Therefore, d_m=m holds true. From [1], [2], if m is a prime number, then d_m=m.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.14

'Comprehensive Exercise'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.15

'(3) \ m, n \ are natural numbers, and \ p \ is a prime number, so \ m, n, p \ are non-zero real numbers. Therefore, from (1), we have \ \\frac{1}{m} + \\frac{1}{n} = \\frac{1}{p} \. Also, in the equation \ a^{m} = b^{n} \, where \ 1 < a < b \, we have\ a^{m} = b^{n} > a^{n} \\text { which implies } a^{m} > a^{n} \\\\\\\The base \ a \ is greater than 1, so \ m > n \. Thus, from (2), we get \ m = p^{2} + p, n = p + 1 \, and therefore\\[ a^{p^{2} + p} = b^{p + 1} = (a b)^{p} \\]\\\\'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.16

'Let the solutions to (1) be α and β, and let f(x)=x^2+2ax+a-1. The condition for α and β to be between the two solutions of (2) is that, under the conditions of (3), f(α)<0 and f(β)<0.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.17

'When non-zero real numbers x,y,zx, y, z satisfy 3x=2y=5z=(\x0crac65)73^{x}=2^{y}=5^{z}=(\x0crac{6}{5})^{7}, find the value of \x0crac1x+\x0crac1y\x0crac1z\x0crac{1}{x}+\x0crac{1}{y}-\x0crac{1}{z}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.18

'Assume integers a and b are not multiples of 3, and let f(x) = 2x^3 + a^2x^2 + 2b^2x + 1. Prove that there does not exist an integer x that satisfies f(x) = 0.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.19

'Given 4x=6y=244^{x}=6^{y}=24, find the value of frac1x+frac1y\\frac{1}{x}+\\frac{1}{y}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.20

"Let's reflect on the concept of repeated roots! In mathematics, repeated roots refer to the case when b^2-4ac=0 in the quadratic equation ax^2+bx+c=0. In the formula for finding the roots of a quadratic equation, x=-b±√(b^2-4ac)/(2a), when b^2-4ac=0, both √(b^2-4ac) and -√(b^2-4ac) are 0, resulting in the root x=-b/(2a)."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.21

'More than 10723 pieces'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.22

'Let n be a natural number greater than or equal to 3, prove the inequality 4^{n}>8 n+1 (A).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.23

'Which of the following is a factor of the polynomial 2x^3+5x^2-23x+10?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.24

'The necessary and sufficient condition for the existence of real numbers x, y satisfying the equations x² - xy + y² = k and x + y = 1 is k ≥ 0.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.25

'How to find the values of k for which P(k) = 0'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.26

'Basic 57: Finding coefficients from divisible conditions'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.27

'Express the following sets of numbers in order using inequality symbols.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.28

'If you deposit 1 million yen with an annual interest rate of 1% compounded annually, in how many years will the total amount of principal and interest first exceed 1.1 million yen? You may use common logarithm table.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.29

'2020 Shibuya Education Institute Makuhari Middle School Arithmetic First Exam'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.30

'Arrange integers greater than 1 that are neither square numbers nor cube numbers in ascending order. 2,3,5,6,7,10,11, \\cdots \\cdots What is the 2020th integer when counted from the smallest?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.31

'(4) When the side length of the black square is between 1 cm and 100 cm, the number of white squares is at least 8 ((1+1) x 4 = 8) and at most 404 ((100+1) x 4 = 404). A number that cannot be expressed as the sum of consecutive integers, besides 1, is an integer that does not have odd divisors. This type of number can be expressed as a product of primes, such as 2 x ・・・ x 2. Therefore, within the mentioned range, there are 8 (pieces), 16 (pieces), 32 (pieces), 64 (pieces), 128 (pieces), and 256 (pieces), with the corresponding side lengths of the black squares being 1 cm, 3 cm, 7 cm, 15 cm, 31 cm, and 63 cm, respectively.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.32

"What is the meaning of '百八の煩脳'?"

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.33

'The ambassador is well received every time he visited the prime minister.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.34

'Regarding question 5, the part underlined as d, the exchange rate between foreign currency and another currency is referred to as foreign exchange rate. For the following statements X and Y concerning this matter, select the correct combination from the options below to answer.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.35

'each 6 points × 2'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.36

'(2) When 3240 is expressed as a product of prime numbers, 3240 = 2 × 2 × 2 × 3 × 3 × 3 × 3 × 5.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.37

'Arrange the integers greater than 1 that are not perfect squares in ascending order such as 2, 3, 5, 6, 7, 8, 10, ..., What is the 300th integer when counting from the smallest?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.38

'Explain the Fibonacci sequence and determine what value the ratio of consecutive terms in this sequence converges to.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.39

'(1) Prove the inequality 2n>\x0crac16n32^{n}>\x0crac{1}{6} n^{3} holds using the binomial theorem. (2) Find the value of limnrightarrowinftyfracn22n\\lim _{n \\rightarrow \\infty} \\frac{n^{2}}{2^{n}}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.40

'Reference line compound line'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.41

'Prove that for two integers a and b, if a+b and ab are coprime, then a and b are coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.42

'Find the number of natural numbers less than or equal to 56 that are coprime to 56.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.43

'Let a and b be natural numbers, where a + b = p + 4 and ab^{2} = q. Find prime numbers p and q that satisfy these conditions.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.44

'Prove that among any 26 distinct integers chosen from 1 to 50, there must be a pair of numbers whose sum is 51.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.45

'Prove that n^{2}+1 is a multiple of 5 if and only if the remainder of n divided by 5 is 2 or 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.46

'About the positive divisors of PR 3500'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.47

'A prime number is a natural number greater than 1, having no positive divisors other than 1 and itself, whereas a number that is not prime is called a composite number. For example, 2, 3, 5, 7, 11, etc. are prime numbers, while 4, 6, 8, 9, etc. are composite numbers.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.48

''

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.49

'135 36'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.50

'Under the given conditions, when p=3k+2, the natural number p that makes p, 2p+1, and 4p+1 all prime numbers is p=3. For prime numbers p greater than or equal to 5, it is evident that either 2p+1 or 4p+1 will be a multiple of 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.51

'Determine the truth or falsehood of the following propositions:\n(2) The positive divisors of 28 are 1, 2, 4, 7, 14, and 28, which is a total of 6 divisors. Therefore, this is a true proposition.\n(3) When n=36, n is a multiple of 4 and 6, but not a multiple of 24. Therefore, this is a false proposition (with n=36 as a counterexample).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.52

'Utilizing the properties of prime numbers'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.53

'Proof regarding relatively prime numbers'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.54

'Prove that the product of consecutive integers is a multiple of 2.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.55

'I\'m confused about how to approach prime number problems. The definition of prime numbers, "Integers greater than 2 that have no positive divisors other than 1 and themselves," is simple. The key is how to use this definition effectively. First, let\'s understand the following properties (1) and (2): (1) The divisors of a prime number p are ±1 and ±p (there are 2 positive divisors: 1 and p), (2) Prime numbers are greater than 2, and the only even prime number is 2. Additionally, all prime numbers greater than 3 are odd. By using the property that "the divisors of prime number p are ±1 and ±p", we can consider four cases (A) to (D) for when (n-3)(n-9) is a prime number p. Pay attention to the relationship n-9<n-3 and 1<p,-p<-1, where only (B) n-9=1 and (C) n-3=-1 are possible. In particular, be careful of mistakes like n-9=-1 in negative cases.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.56

'Answer the following questions regarding the number of elements in a set and the number of cases:\n(1) Find the number of positive divisors of the following number. 360 = 2^3 * 3^2 * 5\n(2) Find the number of terms in the expansion of the following polynomial. (a+b)(p+q+r)(x+y)\n'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.57

'For all natural numbers n, n^2-2n-3 ≠ 0, false\nFor some real numbers x, y, x^2 + 2xy + y^2 ≤ 0, true'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.58

'Find the smallest positive integer whose number of positive divisors is 28.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.59

'(1) {2,4,5,7,9}\n(2) {2,3,5}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.60

'Number of coprime natural numbers'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.61

'Find the greatest common divisor and least common multiple of 72 and 120.\nDivide by common prime factors among the 12 numbers.\nFor example, continue dividing by 2.\n2) 72 \t 120\n2) 36 \t 60\n2) 18 \t 30\nCalculate the greatest common divisor and least common multiple.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.62

'Find all natural numbers p such that the three numbers p, 2p+1, 4p+1 are all prime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.63

'Let p and q be prime numbers with p<q. Also, let m and n be positive integers such that m≥3 and n≥2. Assume that among the integers from 1 to p^m * q^n, the number of integers that are multiples of either p or q is 240. Find the set of (p, q, m, n) that satisfy these conditions.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.64

'Basic Example 106 Number of Positive Divisors\n(1) Find the number of positive divisors of 630.\n(2) If a natural number N is factorized into prime factors, where the prime factors include p and 7, and there are no other prime factors. Furthermore, N has 6 positive divisors, and the sum of positive divisors is 104. Find the values of the prime factor p and the natural number N.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.65

'Perfect numbers and prime numbers'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.66

'(2) Let a be a positive integer, and let p = a^2 + 1 be a prime number. Then n^2 + 1 is a multiple of p if and only if the remainder when n is divided by p is a or p - a.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.67

'(1) 11'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.68

'Prove that for two coprime integers a and b, a+b and ab are also coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.69

'Find the greatest common divisor and least common multiple of 2 integers or 3 integers using prime factorization.\n(1) 168, 378\n(2) 65,156,234'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.70

'114'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.71

'Find the number of natural numbers less than 432 that are coprime to 432.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.72

'(2) Prove that if a natural number P is not divisible by 2 or 3, then P^2-1 is divisible by 24.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.73

'Find the number of natural numbers less than 735 that are coprime to 735.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.74

'To find the remainder when 13 to the power of 15 is divided by 5.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.75

'Let a and b be natural numbers. Prove that if ab is a multiple of 3, then either a or b is a multiple of 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.76

'When N = 250! is factorized, answer the following questions: (1) Find the number of prime factors 5. (2) When calculating N, how many consecutive zeros will appear at the end?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.77

'Paint in the order of D → A → B → C → E. There are 6 ways to paint D → A → B (3!). For each of these, there is 1 way to paint C, and 1 way to paint E. Therefore, the total number of painting ways is 6 × 1 × 1 = 6.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.78

'Find the number of positive divisors of the positive integer 756.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.79

'Problem (2) decomposes the natural number N into prime factors, where the prime factors are p and 5, and there are no other prime factors. In addition, N has 8 positive divisors, and the sum of positive divisors is 90. Find the values of the prime factor p and the natural number N.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.80

'Condition for all three numbers to be prime'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.81

'When the prime factorization of a natural number N is N=p^a * q^b * r^c ......, the number of positive divisors of N is (a+1)(b+1)(c+1) ......'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.82

'There is a quiz to guess the age: My age leaves a remainder of 1 when divided by 3, a remainder of 4 when divided by 5, and a remainder of 1 when divided by 7. Please guess my age. It is less than 105 years old.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.83

'Prove that the product of four consecutive integers n(n+1)(n+2)(n+3) is a multiple of 24.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.84

'Permutation'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.85

'Prove that 2n-1 and 2n+1 are coprime for any natural number n.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.86

'Prove that when a natural number P is not divisible by either 2 or 3, then P^2-1 is divisible by 24.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.87

'73 omission'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.88

'Prove the condition for all three numbers to be prime'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.89

'Pigeonhole principle (room assignment method)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.90

'Let n be a natural number. Find all values of n that make the following expressions prime:\n(A) n^2 - 2n - 24\n(B) n^2 - 16n + 28'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.91

'What are the challenges in discovering large prime numbers?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.92

'Find the smallest natural number n such that √(378n) becomes a natural number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.93

''

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.94

'When an integer can be expressed as the product of several integers, each integer in the product is called a factor of the original integer. Factors that are prime numbers are called prime factors, and expressing a natural number in the form of a product containing only prime numbers is called prime factorization.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.95

'Twin Primes and Triplet Primes'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.96

'Find the smallest positive integer for which the number of positive divisors is 28.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.97

'Finding prime numbers (Sieve of Eratosthenes)\nIf a natural number n is not divisible by all prime numbers less than or equal to its square root, then n is a prime number.\nUsing this rule, consider a method to find all prime numbers less than or equal to 50.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.98

'Number of divisors and sum'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.99

'Factorization'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.00

"Let's review the basics of factoring!"

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.01

'Fundamentals 11: Factoring by extracting common factors'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.02

'Prove that the product of two consecutive integers is a multiple of 2.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.03

'When two integers a and b have no common prime factors, their greatest common divisor is 1. If the greatest common divisor of two integers a and b is 1, then a and b are said to be coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.04

'14 (1) 144 ways\n(2) 720 ways\n(3) 1440 ways'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.05

"Let's summarize the basic steps of prime factorization. To apply the formulas for prime factorization:"

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.06

'When rolling a die twice, how many ways are there for the product of the outcomes to be a multiple of 12?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.07

'From a≥1 and b≥1, it follows that a+b>a+b-1≥1. Furthermore, because a+b-1 is a prime number, a+b-1=1. Therefore, a+b=p. Since a≥1 and b≥1, we have a=1 and b=1. Thus, from (2), we get p=2, which is a prime number. Hence, the values of a and b that make p a prime number are a=1 and b=1.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.08

'Calculate how many times 60! can be divided by 3 and how many consecutive 0s will appear at the end of 50! when calculated?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.09

'(1) Proof: Assume that the integer n is not a multiple of 3, then n can be represented as 3k±1 (k is an integer). So, n^2-1 = (3k±1)^2-1 = 9k^2±6k+1-1 = 9k^2±6k = 3(3k^2±2k) which must be a multiple of 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.10

'Factor out the common factors and factorize.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.11

'95 (1) n=21 (2) n=30,270'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.12

'Find the greatest common divisor of the following pairs of integers using the Euclidean algorithm: (1) 221, 91 (2) 418, 247 (3) 1501, 899'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.13

'Find all values of p for which 51, 2p+1, and 4p+1 are prime numbers. Check if 2p+1 and 4p+1 are prime when p is a prime number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.14

'Prove that for two natural numbers a and b, if a and b are coprime, then a+b and ab are also coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.15

'Prove that for any natural numbers a and k, a and ka+1 are coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.16

'Chapter 4 Divisors and Multiples -235 EX 50 Let n be a natural number greater than or equal to 2, then prove that n^4 + 4 is not a prime number. [Miyazaki University]'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.17

'What kind of problems are good to work on after solving basic examples and standard examples?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.18

'Please answer the following questions: (1) Calculate the result of 60!, and determine the maximum number of times it can be divided by 3. (2) Calculate 50!, and determine how many consecutive zeros appear at the end.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.19

'Prove the following for natural numbers a, b:\n(1) If a and b are coprime, then a^2 and b^2 are coprime.\n(2) If a+b and ab are coprime, then a and b are coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.20

'Prove that for any natural number n greater than or equal to 2, n^4+4 is not a prime number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.21

'Use the symbols subset,=\\subset ,= to describe the relationship between the two sets A,BA, B. A=\\{n \\mid n is a prime number less than or equal to 7 \\}, \\quad B=\\{2n-1 \\mid n=2,3,4\\}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.22

'For the following mathematical questions: (1) Using the quotient of dividing 10 by 2, dividing 4 by 2, and dividing 2 by 2, with the method of counting the number of multiples of 2, what is the maximum number of times that 10! can be divided by 2? (2) Using the quotient of dividing 10 by 5, calculate 10! and determine how many consecutive zeros appear at the end?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.23

'(1) Find the number of positive divisors of 720.\n\n(2) Decompose a natural number N into prime factors, where the prime factors are 2 and 3, with no other prime factors. Also, it is known that N has exactly 10 positive divisors. Find all such natural numbers N.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.24

'A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A composite number is a natural number greater than 2 that is not a prime number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.25

'How many strings can be formed using all 8 letters of TANABATA?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.26

'Question A (2) Find two natural numbers denoted as 6m and 6n, where m and n are coprime natural numbers. Since 6m>6 and 6n>6, we have m>1 and n>1. Given 4536=6m·6n, we get mn=126. As mn is not a perfect square, m cannot equal n, thus 1<m<n. Solving for pairs of m and n that satisfy this condition, we get (m, n) = (2,63), (3,42), (6,21), (7,18), (9,14). Among these pairs, the coprime ones are (2,63), (7,18), (9,14). Therefore, the two required natural numbers are 12,378 or 42,108 or 54,84.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.27

'How do you convert the binary number 101 to decimal?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.28

"When the 8 letters of the word 'addition' are arranged horizontally in a single row, how many possible ways are there to arrange them?"

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.29

'Master the method of determining multiples and conquer example 85!'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.30

'Find the smallest natural number that has 8 positive divisors.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.31

'(1) Let n be a natural number. Find all values of n for which the following expressions result in a prime number. (a) n^{2}+6 n-27 (b) n^{2}-16 n+39 (2) Let a, b be natural numbers, and let p=a^{2}-a+2 a b+b^{2}-b. Find all values of a, b for which p is a prime number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.32

'(1) How many natural numbers N exist such that they have 3 digits when represented in base-5?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.33

'Find the smallest natural number with 4 positive divisors.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.34

'Answer: Math section 50 omitted 51 (1) {1,2,3,4,5,6,7,9,12,18} (2) {1,2,3,6}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.35

'25 (2) (J) 3'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.36

'Find all values of p for which p, 2p+1, and 4p+1 are all prime numbers.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.37

'Permutation with order determined. Standard 20 permutation with order determined.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.38

''

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.39

'Prove that a and k a+1 are coprime when a and k are natural numbers.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.40

'When we divide Example 83 into maximum and minimum values, we get the following results.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.41

'Problem of finding integer solutions to a linear Diophantine equation (3) (using the Euclidean algorithm).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.42

"Let's review how to find integer solutions for linear Diophantine equations! When integer solutions are not easily found, you can use the method of successive divisions. By retracing the calculations of the method of successive divisions in reverse, you can find integer solutions."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.43

'Assuming a and b are not relatively prime, i.e., a and b have a common prime factor p, then a=pk, b=pl (k, l are natural numbers).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.44

'When rolling two dice at the same time, how many ways can the number 1 not appear on any of the dice?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.45

'There is a point P on the x-axis. When a six-sided die is rolled and a multiple of 6 appears, P moves forward 1 unit in the positive direction of the x-axis, and when a non-multiple of 6 appears, P moves 2 units in the negative direction of the x-axis. When the die is rolled 4 times, the probability that the point P, starting from the origin, is at the point x=-2 is A, and the probability that it is at the origin is B.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.46

'Find the number of positive divisors and their sum of 648.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.47

'Find the largest three-digit natural number that leaves a remainder of 5 when divided by 14 and a remainder of 7 when divided by 9.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.48

'Find the maximum value of n for EX children and the corresponding values of a, b'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.49

'The method of factorization'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.50

'Euclidean algorithm\nFor natural numbers a and b, if a is divided by b and the remainder is r, then the greatest common divisor of a and b is equal to the greatest common divisor of b and r.\nBy repeatedly using this method, we can find the greatest common divisor of two natural numbers. This method is called the Euclidean algorithm or simply the division algorithm.\nFor example, finding the greatest common divisor of 319 and 143\nBy observing the division of 319 by 143 resulting in the equation 319=143*2+33, according to the theorem, instead of finding the greatest common divisor of 319 and 143, we can find the greatest common divisor of the divisor 143 and the remainder 33. Continuing this operation, the remainders will decrease. Moreover, since the remainder is greater than or equal to 0, eventually the remainder will become 0. When the remainder becomes 0, the divisor at that step is the desired greatest common divisor.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.51

'Mathematics A\nTR\n(1) Using congruence equations, find the following:\nFind the remainder when 12^{1000} is divided by 11\nFind the unit digit of 13^{81}\n(2) Prove using congruence equations that if integers a, b, c satisfy a^2+b^2=c^2, then at least one of a and b is a multiple of 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.52

'Divide 5390 by a natural number n such that the remainder is 0 and the quotient is a square of a natural number. Find the minimum value of n that satisfies this condition.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.53

'Using congruences, find the following:'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.54

'Find the smallest natural number that has 8 positive divisors.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.55

'1. Let n be an integer. Find all values of n such that (n-4)(n+8) is a prime number. 2. Let a and b be distinct natural numbers. Find prime numbers p and q that satisfy both equations ab=p and a+b=q.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.56

'Factorize the natural number N, where the prime factors are 3 and 5, and there are no other prime factors. Moreover, N has exactly 6 positive divisors. Find all natural numbers N that satisfy these conditions.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.57

'Explain the proof by contrapositive method, and prove the following proposition T using contrapositive:'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.58

'Find the number of factors of 10000.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.59

'Find the number of divisors of 10000.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.60

'Let a and b be natural numbers. Prove the following: (1) If a and b are coprime, then a^{2} and b^{2} are coprime. (2) If a+b and ab are coprime, then a and b are coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.61

'Prove that for any natural number a, a and a+1 are coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.62

'Find the smallest 4-digit natural number that leaves a remainder of 8 when divided by 23 and a remainder of 5 when divided by 15.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.63

'Multiply 150 by a two-digit natural number n in order to make it a square of a certain natural number. Find the maximum value of n that satisfies this condition.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.64

'When rolling three dice at the same time, how many ways are there for all three dice to show odd numbers?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.65

'(1) \\\\\\ (72^{\\circ} \\\\\\\\\n(2) \\\\\\\n(\\frac{\\sqrt{5}-1}{2} \\\\\\\\\n(3) \\\\\\\n(\\frac{\\sqrt{5}+1}{4}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.66

'Find the number of elements in the following sets within the natural numbers less than 500:\n(1) Set of numbers divisible by 3\n(2) Set of numbers divisible by 3, 5, and 7\n(3) Set of numbers divisible by 3 but not by 5\n(4) Set of numbers not divisible by either 3 or 5\n(5) Set of numbers divisible by 3 but not by 5 or 7'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.67

'(1) Find the number of positive divisors of 1800.\n\n(2) When a natural number N is prime factorized, its prime factors are 3 and 5, with no other prime factors. Also, N has exactly 6 positive divisors. Find all such natural numbers N.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.68

'When non-zero real numbers x, y, z satisfy 2^{x}=5^{y}=10^{\x0crac{z}{2}}, find the value of \x0crac{1}{x}+\x0crac{1}{y}-\x0crac{2}{z}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.69

'Determine the number of distinct real solutions of the equation x^3-3x^2-9x+k=0.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.70

'Let \ \\omega \ be one of the imaginary solutions of the equation \ x^{3}=1 \. Then, \ \\frac{1}{\\omega}+\\frac{1}{\\omega^{2}}+1=\\square, \\omega^{100}+\\omega^{50}=\\square \.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.71

'Find the general term of the sequence 1, 17, 35, 57, 87, 133, 211, ...'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.72

'If non-zero real numbers x, y, z satisfy 2^{x}=5^{y}=10^{\x0crac{z}{2}}, find the value of \x0crac{1}{x}+\x0crac{1}{y}-\x0crac{2}{z}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.73

'Find the value of p when the sum of irreducible fractions with prime numbers as denominators between 1 and 10 is 198.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.74

'Using the binomial theorem, find the following values:'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.75

'3. \ { }_{n} \\mathrm{C}_{0}+{ }_{n} \\mathrm{C}_{1}+{ }_{n} \\mathrm{C}_{2}+\\cdots \\cdots+{ }_{n} \\mathrm{C}_{n}=2^{n} \'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.76

'Consider all integers from 1 to 300.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.77

'Consider the sequence a1=1,a2=1,an+2=an+1+ana_{1}=1, a_{2}=1, a_{n+2}=a_{n+1}+a_{n}, find the general term of this sequence.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.78

'Choose one of the following 0-5: \n(0) p_{4}<p_{5}\n(1) p_{4}=p_{5}\n(2) p_{4}>p_{5}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.79

'There exist exactly two complex numbers z=x+yi (where x, y are real numbers) such that the square of z is equal to 8i. Find these z.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.80

'Assuming it is a geometric progression, the common ratio is \\frac{6}{3}=2. If the nth term is 1500, then 3* 2^{n-1}=1500. As a result, 2^{n-1}=500, 500=2^{2}* 5^{3}, hence there is no natural number n that satisfies this equation. Therefore, it cannot be a geometric progression.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.81

'Prove that for all positive integers n, 3^(3n-2)+5^(3n-1) is a multiple of 7.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.82

'Prove that for all positive integers n, 3^{3n-2}+5^{3n-1} is a multiple of 7.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.83

''

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.84

'Let k be a positive integer. Find all values of k such that there is exactly one integer n satisfying 5n^{2}-2kn+1<0.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.85

'Select the correct options from A to E below.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.86

'For the two equations x2x+a=0,x2+2ax3a+4=0 x^{2}-x+a=0, x^{2}+2ax-3a+4=0 , determine the range of values for the constant a a so that the following conditions are met:\n(1) Both equations have real solutions\n(2) At least one of them does not have real solutions\n(3) Only one of them has real solutions'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.87

'Express the symbols and ways of representation of set 44.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.88

'130 (1) (2) (2) (4) (6) (7) (9) (3) (10) (12)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.89

'Find the maximum and minimum values of 2x+y when real numbers x and y satisfy x²+y²=2. Also, determine the values of x and y at that time.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.90

'Gaussian symbol and graph (Gaussian symbol)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.91

'180 (1), (3)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.92

'Find the range of values for the constant k so that the quadratic equation x² + (2k-1)x + (k-1)(k+3) = 0 has real roots.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.93

'Among three consecutive natural numbers, the square of the smallest number is equal to the sum of the other two numbers. Find these three numbers.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.94

'(1) The meaning of "big" is not clear, so it is not possible to determine if it is true or false. Therefore, it is not a proposition.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.95

'Find the range of values for the constant aa such that the quadratic equation x2+(a3)xa+6=0x^{2}+(a-3)x-a+6=0 has no real solutions.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.96

'Find the number of intersection points between the parabola y = 2x^2 + 3x - a + 1 and the x-axis using the constant a.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.97

'Factorization of 2'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.98

'127 (3), (5)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.99

'Find the solutions to the factored quadratic inequalities. Find the solutions to the following inequalities.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.00

'Please prove that the expression (ab)(bc)(ca)(a-b)(b-c)(c-a) has factors.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.01

'Find a condition for having one solution greater than p and one solution less than p.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.02

'(1) {2,4,5,7,9}\n(2) {2,3,5}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.03

'Translation of 17 (3) 1'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.04

'(4) Let a₁, b₁ be coprime positive integers, and let a₂, b₂ also be coprime positive integers. Define sets Q₁ and Q₂ as\nQ₁={z | z is a complex number represented as (cos(2𝑎_{1}/𝑏_{1}π) + i sin(2𝑎_{1}/𝑏_{1}π))^k using an integer k}\nQ₂={z | z is a complex number represented as (cos(2𝑎_{2}/𝑏_{2}π) + i sin(2𝑎_{2}/𝑏_{2}π))^k using an integer k}\nand define set R as\nR={z | z is a complex number represented as a product of elements from set Q₁ and set Q₂}. If b₁ and b₂ are coprime, the number of elements n(R) in set R is square. If b₁ and b₂ are not coprime, and we denote their greatest common divisor as d, then the number of elements n(R) in set R is circle.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.05

'11 (3) 0'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.06

'When k=\x0crac12k=-\x0crac{1}{2}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.07

'Sum of infinite series using recurrence relation'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.08

'Prove \\((k+1)!\\)^{2} = \\((k+1) \\cdot k!\\)^{2} = (k+1)^{2} \\cdot (k!)^{2} \\geqq (k+1)^{2}(k+1)^{k-1} = (k+1)^{k+1} \\).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.09

'In order, it is 10 (1) 2 (2);'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.10

'(2) Let l and k be coprime natural numbers. Prove that the complex numbers z^l, z^2l, z^3l, ..., z^kl are all distinct.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.11

'8 (1) Incorrect\n(2) Incorrect\n(3) Incorrect\n(4) Correct'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.12

'Mathematics'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.13

'Here, the nth prime number Pn satisfies Pn>n, and for all natural numbers k satisfying 1 ≤ k ≤ n, k can be expressed using prime numbers p1, p2, ..., pn as k = p1^m1(k)×p2^m2(k)×...×pn^mn(k) [where m1(k), m2(k), ..., mn(k) are integers greater than or equal to 0 and less than or equal to n]. Therefore, 1/k = 1/(p1^m1(k)×p2^m2(k)×...×pn^mn(k))'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.14

'Deriving from the condition of C winning the competition, we get frac2p2p2p+2geqqfrac13\\frac{2 p^{2}}{p^{2}-p+2} \\geqq \\frac{1}{3}. Since p2p+2=left(pfrac12right)2+frac74>0p^{2}-p+2=\\left(p-\\frac{1}{2}\\right)^{2}+\\frac{7}{4}>0, clearing the denominator and simplifying gives 5p2+p2geqq05 p^{2}+p-2 \\geqq 0. Solving this inequality yields pleqqfrac1sqrt4110,frac1+sqrt4110leqqpp \\leqq \\frac{-1-\\sqrt{41}}{10}, \\frac{-1+\\sqrt{41}}{10} \\leqq p. Note that frac1sqrt4110<0\\frac{-1-\\sqrt{41}}{10}<0, and since 6<sqrt41<76<\\sqrt{41}<7 implies frac12<frac1+sqrt4110<frac35\\frac{1}{2}<\\frac{-1+\\sqrt{41}}{10}<\\frac{3}{5}. Hence, with 0<p<10<p<1, we have frac1+sqrt4110leqqp<1\\frac{-1+\\sqrt{41}}{10} \\leqq p<1. Next, we find the natural number nn that satisfies the condition fracn1100<frac1+sqrt4110leqqfracn100cdots\\frac{n-1}{100}<\\frac{-1+\\sqrt{41}}{10} \\leqq \\frac{n}{100} \\cdots (1). Solving yields 54<10+sqrt4100<5554<-10+\\sqrt{4100}<55. Since nn is monotonically increasing, the smallest nn satisfying (1) is 5555. Therefore, the minimum value of the required NN is 55.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.15

'In the case of polynomials, we can also use factorization to find the greatest common divisor and the least common multiple, similar to the case of integers.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.16

'When plucked, a string at half length produces a sound one octave higher. Here, the ratio of string lengths between the C and the higher octave C is divided into 12 equal parts, forming the 12-tone equal temperament. This is a commonly used scale.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.17

'Find the remainder when 29^51 is divided by 900.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.18

'When positive real numbers x, y satisfy 9x^2 + 16y^2 = 144, the maximum value of xy is √.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.19

'Translate the given text into multiple languages.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.20

'Find the polynomial x such that when divided by x^2+1, the remainder is 3x+2, and when divided by x^2+x+1, the remainder is 2x+3, with the minimum degree of x being 48.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.21

'Find all positive integers n such that n^{n}+1 is divisible by 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.22

'Determine the values of constants a and b such that f(x)=a x^{n+1}+b x^{n}+1 is divisible by (x-1)^{2}, where n is a natural number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.23

'91 (1) 4 pieces'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.24

'The Remainder Theorem and the Factor Theorem'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.25

'169 (3) 2'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.26

'16 44'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.27

'Let \ p \ be a prime number, and let an integer \ r \ satisfy \ 1 \\leqq r \\leqq p-1 \. Show that \ p_r \ is divisible by \ p \.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.28

'If a, b are prime numbers and the quadratic equation 3 x^{2}-12 a x+a b=0 has two integer solutions, find the values of a, b and the integer solutions.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.29

'(2) \ \\sqrt{d}=\\sqrt{a b^{2} c^{3}}=b c \\sqrt{a c} \ The condition for \ \\sqrt{d} \ to be an integer is that the product of \a c\ must be a perfect square. Among such natural numbers \\(a, c(a>c>1)\\), the smallest is given by \ a=2^{3}, c=2 \ Choosing \b=3\ gives \d=2^{3} \\cdot 3^{2} \\cdot 2^{3}=576\.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.30

'If the remainder of dividing P(x) by (x-1)^{2} is a constant, find the remainder when dividing P(x) by (x-1)^{2}(x+1).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.31

'1042'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.32

'In a square on the complex plane, if one pair of adjacent vertices are point 1 and point 3+3i, find the complex numbers representing the other two vertices.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.33

''

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.34

'119 (1) 3'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.35

''

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.36

'Translate the given text into multiple languages.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.37

None

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.38

'Prove that for all natural numbers n, 2^n > n.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.39

'Real and pure imaginary conditions of complex number z\nLet z=a+bi (a, b are real numbers)\n• z is real ⇔ z=̄z\nSince ̄z=z holds, a-bi=a+bi, which implies -b=b, so b=0, hence z=a, and z is real.\nConsidering this on the complex plane, point z and point ̄z are two symmetric points about the real axis, these two points coincide only on the real axis, therefore z is real.\n• z is pure imaginary ⇔ ̄z=-z and z≠0\nSince ̄z=-z and z≠0 holds, a-bi=-a-bi, implying a=-a, so a=0, therefore z=bi, and since z≠0, therefore b≠0, so z is pure imaginary.\nConsidering this on the complex plane, point ̄z and point -z are two symmetric points about the imaginary axis, these two points coincide only on the imaginary axis, except for the origin O, all other points are pure imaginary, so z is pure imaginary.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.40

'81 \\sqrt{5}-1'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.41

'Prove that for complex numbers zz and ww satisfying z=w=1,zwneq1|z|=|w|=1, zw \\neq 1, the expression fraczw1zw\\frac{z-w}{1-zw} is a real number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.42

'101 (2) 4'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.43

'There are how many 5-digit numbers that can be formed by arranging all five of the numbers 0, 1, 2, 3, 4? The 40th number when these integers are arranged in ascending order is , and 32104 is the number, when arranged in ascending order, in what position?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.44

'Prove that for natural numbers n, k satisfying 2 ≤ k ≤ n-2, the binomial coefficient C(n, k) > n.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.45

'Using the Sieve of Eratosthenes, prove that there are more than 750 non-prime integers below 1000.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.46

"Please explain the content of Brahmagupta's axioms."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.47

'The maximum value of n is obtained by calculating the number of zeros at the end of 50!, which is equal to the number of prime factor 5 when 50! is prime factorized. Among the natural numbers from 1 to 50, the number of multiples of 5 is 10 (the number of multiples of 5^2 is 2, as 50 divided by 5^2 is 2). Since there are no multiples of 5^n (n ≥ 3), the number of prime factor 5 is 10+2=12. Hence, the maximum value of n to be found is 12.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.48

'Prove that for any natural number n, f(n) = 5^{3n} + 5^{2n} + 5^n + 1. When n is not a multiple of 4, f(n) is a multiple of 13.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.49

"Describe the steps of Euclid's algorithm and provide a specific example, please."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.50

'If a and b are coprime, and a k is a multiple of b, then k is also a multiple of b.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.51

'For a prime number p, find the minimum value of p such that n = p^14 and n ≥ 1900.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.52

'Prove that for any natural number n, n^5 - n is a multiple of 15.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.53

'About the product of consecutive integers.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.54

'Exercise 6 III-> Book p .59 \\[ x = \\sqrt{12 + 2 \\sqrt{35}} = \\sqrt{(7 + 5) + 2 \\sqrt{7 \\cdot 5}} = \\sqrt{7} + \\sqrt{5} \\\\\\ y = \\sqrt{12 - 2 \\sqrt{35}} = \\sqrt{(7 + 5) - 2 \\sqrt{7 \\cdot 5}} = \\sqrt{7} - \\sqrt{5} \\\\\\ \\sqrt{\\frac{x}{y}} = \\sqrt{\\frac{\\sqrt{7} + \\sqrt{5}}{\\sqrt{7} - \\sqrt{5}}} = \\sqrt{\\frac{(\\sqrt{7} + \\sqrt{5})^{2}}{(\\sqrt{7} - \\sqrt{5})(\\sqrt{7} + \\sqrt{5})}} = \\sqrt{\\frac{(\\sqrt{7} + \\sqrt{5})^{2}}{7 - 5}} = \\sqrt{\\frac{(\\sqrt{7} + \\sqrt{5})^{2}}{2}} = \\frac{\\sqrt{7} + \\sqrt{5}}{\\sqrt{2}} = \\frac{(\\sqrt{7} + \\sqrt{5}) \\sqrt{2}}{(\\sqrt{2})^{2}} = \\frac{\\sqrt{14} + \\sqrt{10}}{2} \\]'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.55

'Natural numbers greater than 2 can be factorized into prime factors.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.56

'Example 75 | Use of Prime Factorization'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.57

'Let p be a prime number. Find all pairs of natural numbers (n, k) satisfying k ≤ n and such that the binomial coefficient C(n, k) = p.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.58

'Find all the prime number triples (a, b, c) where 40-a-8 and b-c-8 are prime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.59

'Numbers that are greater than 125 and multiples of 5 include 150, 155, 160, 165, 130, etc. When factorizing 165!, what is the number of prime factor 5?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.60

'How many natural numbers from 1 to 100 are divisible by 2, 3, and 5? How many natural numbers are divisible by 2, 3, or 5? How many numbers are divisible by 2 but not by 3 or 5?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.61

'(2) Prove that there exist non-prime numbers among a, b, c.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.62

'Please solve the problem about Gaussian notation and quadratic inequalities.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.63

'Find the values of the natural number n for which both n and n^{2}+2 are prime numbers.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.64

"Provide examples of composite numbers for which the converse of Fermat's Little Theorem 'If the coprime integer a does not satisfy a^{p-1} ≡ 1 (mod p), then p is not a prime (but a composite)' holds true: 9, 35."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.65

'Translate the given text into multiple languages.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.66

'Find the divisors of the following numbers. (1) 36 (2) 14 (3) Is 12345 a multiple of 3 or 9? (4) Are 91 and 144 relatively prime?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.67

'Find all odd numbers a greater than 423 and less than 9999 for which (a^2 - a) is divisible by 10000.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.68

'Prove that composite numbers always have prime numbers as factors.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.69

'Translate the given text into multiple languages.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.70

'In (3) (2), if we remove the distinction between A, B, and C, then the same things can be combined in 3! ways each, so 1680 ÷ 3! = 1680 ÷ 6 = 280 (ways)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.71

'A prime number p satisfies the condition: m² - n² = p. Prove that there exists a unique pair of natural numbers (m, n) that satisfy this condition.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.72

'Prove that p is a prime number greater than 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.73

'Check if 91 and 144 are coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.74

'Find the divisors of 36.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.75

'Assume that p is a prime number larger than 3, and p + 4 is also a prime number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.76

'Assume that a, b, and c are not multiples of 5.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.77

'Prove the formula to find the nth Catalan number (Catalan number Cn). Also, find the Catalan number when n=4.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.78

'Prove the following proposition: If an integer n is not a multiple of 3, then n² is also not a multiple of 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.79

'Challenge accepted. The solution also contains =.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.80

'Example 49 | Classification of Integers by Remainder\nProve the following:\n(1) For any integer n, n^{4}+5 n^{2} is a multiple of 3.\n(2) The remainder is never 3 when squaring an integer and dividing by 5.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.81

'Find the number of elements in the following sets among natural numbers less than 500.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.82

'Find all the factors of the given numbers 25 and 36.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.83

'(1) Calculate the result of 20 factorial, how many times can it be divided by 2.\n(2) Calculate 25 factorial, how many consecutive zeros will appear at the end.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.84

'Let n=2m1left(2m1right)(m=2,3,4,cdotscdots)n=2^{m-1}\\left(2^{m}-1\\right)(m=2,3,4, \\cdots \\cdots). Prove that T(n)=nT(n)=n when 2m12^{m}-1 is a prime, and use 1+2+cdotscdots+2m1=2m11+2+\\cdots \\cdots+2^{m-1}=2^{m}-1.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.85

'If ab is a multiple of prime number p, then either a or b is a multiple of p.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.86

'Divisors and Multiples Problem: Find the number of positive divisors of a natural number N. When the prime factorization of a natural number N is N=p^a q^b r^c ... ..., the number of positive divisors of N is'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.87

'Prove the conditions for the existence of integer solutions to the 99 1 1 indeterminate equation'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.88

'Since (3k + 1)(3k + 2) is the product of two consecutive integers, it is a multiple of 2. Therefore, it can be expressed as (3k + 1)(3k + 2) = 2l, and (p + 1)(p + 2)(p + 3) = 24l(2k + 1). As p, p + 1, p + 2, p + 3, p + 4 are five consecutive integers, one of them is a multiple of 5. If we let p = 5, then p + 4 = 9, which is not a prime number, leading to p + 4 not being prime, hence p > 5, so p, p + 4 are prime numbers greater than 5, hence not multiples of 5. Therefore, one of p + 1, p + 2, p + 3 is a multiple of 5. Therefore, (p + 1)(p + 2)(p + 3) is a multiple of 5. By 2 and 3, (p + 1)(p + 2)(p + 3) is a multiple of 24, hence a multiple of 120.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.89

'Among the natural numbers less than 30, there are 15 multiples of 2, 7 multiples of 2^2, 3 multiples of 2^3, and 1 multiple of 2^4. Therefore, the number of prime factor 2 in the prime factorization of 30! is'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.90

'Exercise 15 III (→ Textbook p.84)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.91

'Find all prime numbers kk such that k2+2k^{2}+2 is a prime number, and prove that there are no other cases.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.92

'(1) Find the smallest positive integer n such that n! / 1024 is an integer.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.93

'When there are two pairs of dice with only two equal faces each, the only case where the product of two different numbers between 1 and 6 becomes a perfect square is 2^2=1×4, so the sets that satisfy this condition are {1,2,2} and {1,1,4},{2,2,4} and {1,4,4}, in this case k=4,16, leading to k=4,10,15,16,40,90,120'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.94

'Among natural numbers below 125, there are 25 multiples of 5, 5 multiples of 5^2, and 1 multiple of 5^3. Therefore, the number of prime factor 5 in the prime factorization of 125! is'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.95

'Prove that if two natural numbers a and b are coprime, then a+b and a*b are also coprime.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.96

'Find all combinations of numbers from 0 to 5 where the sum of their digits is a multiple of 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.97

'Important Example 82 | Proof of Irrationality'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.98

'Prove that if 49 is a prime number, then p4+14p^{4}+14 is not a prime number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.99

"The prime factorization of a composite number is unique, except for the order of the factors. Let's prove the uniqueness of prime factorization using the theorem above. Proof: Suppose the prime factorization of composite number a is represented in two different ways."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.00

'Explain the method to determine whether an integer N is a prime number. For example, check if 257 is a prime number.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.01

'For any natural number n greater than 2, let T(n) be the sum of all positive divisors of n (excluding n itself). Find the value of T(120).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.02

'Prime number problem\nLet n be a natural number. Prove that the only case where n, n+2, and n+4 are all prime numbers is when n=3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.03

'Key Example 87 | Proof problem about the equation a^2+b^2=c^2\n\nLet a, b, c be natural numbers that do not have any common factors other than 1. When a, b, c satisfy the equation a^2+b^2=c^2, prove the following:\n(1) One of a, b is even and the other is odd.\n(2) If a is odd, then b is a multiple of 4.\n(3) At least one of a, b is a multiple of 3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.04

'Important Example 83 Number of relatively prime natural numbers'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.05

Prove the following proposition. (2) If mnm n is odd, then both mm and nn are odd.

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.06

For the following cases (1) to (5), find the maximum and minimum values of the quadratic function y=x22ax+a y = x^2 - 2ax + a in the interval 1x2 1 \leqq x \leqq 2 , assuming that a is a constant. (1) a < 1 (2) 1 \leqq a < \frac{3}{2} (3) a = \frac{3}{2} (4) \frac{3}{2} < a \leqq 2 (5) a > 2

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.07

1. Let the minimum value of the quadratic function y=x2+2bx+6+2b y=x^{2}+2 b x+6+2 b in the cubic equation 413x 41^{3} x be m m . (1) Express m m in terms of b b . (2) Determine the maximum value of m m and the corresponding value of b b as b b varies.

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.08

Basic Exercise 76 Let z=1+i. (2) Find the smallest natural number n such that z^n is a purely imaginary number.

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor
Updated: 12/12/2024