The #1 Monster Quest : AI tutor AI Learning Service

Connect With Us on Social Media

Monster Quest | AI tutorMonster Quest | AI tutorMonster Quest | AI tutor

Monster Quest | AI tutor The No.1 Homework Finishing Free App

Numbers and Algebra

Advanced Algebra - Exponential and Logarithmic Functions | AI tutor The No.1 Homework Finishing Free App

Q.01

'Solve the following equation:'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.02

'Math II'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.03

'(3) (2) from Mn=frac1nsumk=1nck=frac1ncdotfracn2(2log2a+fracn12log2r) M_{n}=\\frac{1}{n} \\sum_{k=1}^{n} c_{k}=\\frac{1}{n} \\cdot \\frac{n}{2}(2 \\log _{2} a+\\frac{n-1}{2} \\log _{2} r) \n\n=log2a+fracn14log2r=log2arfracn14=\\log _{2} a+\\frac{n-1}{4} \\log _{2} r=\\log _{2} a r^{\\frac{n-1}{4}}\n\nTherefore, from dn=2Mn d_{n}=2^{M_{n}} we have d_{n}=2^{\\log _{2} a r^{\\frac{n-1}{4}}}=\\operatorname{\overline} \\frac{n-1}{4}\nHence fracdn+1dn=fracarfracn4arfracn14=rfrac14 \\frac{d_{n+1}}{d_{n}}=\\frac{a r^{\\frac{n}{4}}}{a r^{\\frac{n-1}{4}}}=r^{\\frac{1}{4}} (constant).\nTherefore, the sequence leftdnright \\left\\{d_{n}\\right\\} is a geometric sequence with first term d1=a d_{1}=a and common ratio rfrac14 r^{\\frac{1}{4}} .'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.04

'What were the achievements of John Napier (1550-1617)?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.05

'(1) Let log2a=log3b=k \\log _{2} a=\\log _{3} b=k , then a>1,b>1 a>1, b>1 \n\\[\egin{array}{l}\nk>0 \\quad \\text { and } a=2^{k}, b=3^{k} \\\\\n\\text { Now } \\quad\\left(a^{\\frac{1}{2}}\\right)^{6}-\\left(b^{\\frac{1}{3}}\\right)^{6}=a^{3}-b^{2}=\\left(2^{k}\\right)^{3}-\\left(3^{k}\\right)^{2}=8^{k}-9^{k}<0 \\\\\n\\text { Therefore } \\quad\\left(a^{\\frac{1}{2}}\\right)^{6}<\\left(b^{\\frac{1}{3}}\\right)^{6} \\\\\na>1, \\quad b>1 \\text { so } \\quad a^{\\frac{1}{2}}<b^{\\frac{1}{3}} \\\\\n\\end{array}\\]'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.06

'Common Logarithm Table: Table of logarithms with base 10.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.07

'Find the sum of the following series. Given n≧2:\n(1) 1•2^{3} + 2•2^{4} + 3•2^{5} + ... + n•2^{n+2}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.08

'Given that the sum of the first 8 terms of a geometric sequence is 54, and the sum of the first 16 terms is 63, find the sum of terms 17 to 24 of this geometric sequence.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.09

'65 (1) 1.5 < \\log _{4} 9 < \\log _{2} 5\n(2) \\log _{4} 2 < \\log _{3} 4 < \\log _{2} 3'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.10

'Practice problem: Let log_{2} x=t, where 1≤x≤8 corresponds to 0≤t≤3. Also, log_{1/2} x=-log_{2} x=-t. Define y=t^{2}-2 t+3 as a function of t. Find the maximum and minimum values of y within the range 0≤t≤3.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.11

'Chapter 7 Exponential and Logarithmic Functions-147'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.12

'If \ \\log_{3} 2=a, \\log_{5} 4=b \, express \ \\log_{15} 8 \ in terms of \ a \ and \ b \.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.13

'Exponential function and logarithmic function'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.14

'When you want to learn advanced topics, which pages should you refer to?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.15

'Exponential function'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.16

'Find the value of the logarithm.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.17

'Prove that if 16^4 * x + y + z = 1 / x + 1 / y + 1 / z = 1, then at least one of x, y, or z must be 1.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.18

'Confirmation of conditions for logarithmic equations and real numbers'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.19

'Find the following values.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.20

'Find the general term of the recurrence relation an+1=3an+2n1a_{n+1}=3a_n+2n-1.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.21

'If you deposit 1 million yen with an annual interest rate of 1% compounded annually, in how many years will the total amount first exceed 1.1 million yen? It is permissible to use common logarithm table.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.22

'Here are two examples where an infinite geometric series is used: 1. Trisection of a square Divide a square paper with area 1 into four equal parts in a cross shape, and distribute one each to A, B, and C. Divide the remaining one into four equal parts again, and distribute one each to A, B, and C. Repeat this process infinitely, the total area of paper received by A, B, and C can be expressed as the following infinite geometric series ∑(1/4)^n (from n=1 to ∞). Find the sum of this infinite geometric series.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.23

'In order for the sequence leftleft(frac5xx2+6right)nright\\left\\{\\left(\\frac{5x}{x^{2}+6}\\right)^{n}\\right\\} to converge, determine the range of real numbers for xx. Also, find the limit of the sequence at that time.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.24

'(1) Eliminate A, B from the equation y=A \\sin x + B \\cos x -1 to obtain the differential equation ③ 213.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.25

'For a ball launched straight up at a certain speed, let h meters be the height above the ground x seconds after launch. When the value of h is given by h=-5x²+40x, in what range of x values is the ball at a height between 35m and 65m from the ground?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.26

'Let f(x) = (log_{2} \x0crac{x}{a})(log_{2} \x0crac{x}{b}) (where a b = 8, a > b > 0). If the minimum value of f(x) is -1, find the value of a^2.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.27

'For a sequence \ \\left\\{a_{n}\\right\\} \, it is assumed that the sum from the initial term \ p a_{1} \ to the nth term \ p^{n} a_{n} \ of the sequence \ \\left\\{p^{n} a_{n}\\right\\} \ is equal to \ q^{n} \. Where, \ p \\neq 0 \. \n(1) Find \ a_{n} \. \n(2) Find \ S_{n}=a_{1}+a_{2}+\\cdots+a_{n} \.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.28

"(3) Let y=x^{3}+4 x^{2}+6 x-1, then y'=3 x^{2}+8 x+6=3(x+4/3)^{2}+2/3 is greater than 0 for all real numbers, which means y is increasing. Therefore, the equation x^{3}+4 x^{2}+6 x-1=0 has 1 real root."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.29

'(2) Let \ \\log _{3} 7=a, \\log _{4} 7=b \. Find \ \\log _{12} 7 \ in terms of \a, b\.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.30

'Prove the following equations:'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.31

'Solve the following equations and inequalities, where a is a positive constant not equal to 1.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.32

'Solve the following inequalities.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.33

'Arrange the values log_{a} b, log_{b} a, log_{a}(\\frac{a}{b}), log_{b}(\\frac{b}{a}), 0, \\frac{1}{2}, 1 in ascending order when 1 < a < b < a^{2}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.34

'Answer the following questions about the properties of logarithmic functions.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.35

'Consider the scale of the logarithmic scale shown below.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.36

'For the complex number z, the function e^z is defined by replacing 11 with x in the expression'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.37

"Practice 67 |II| Book p.558 (1) f'(x) = (1 + x/√(1+x^2)) / (x + √(1+x^2)) = 1/√(1+x^2) (2) Polar equation r=θ(θ≧0) gives x=r cosθ = θ cosθ, y=r sinθ = θ sinθ where dx/dθ = cosθ − θ sinθ, dy/dθ = sinθ + θ cosθ Therefore, the table of increasing and decreasing values of x, y with respect to θ is as follows. θ = 0 ... α ... β ... π dx/dθ + 0 - - - x ↗ local max ↘ ↘ dy/dθ + + + 0 - y ↗ ↗ local max ↘ However, \\cos α−α\\sin α=0 is the verification condition \\sin β+β\\cos β=0"

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.38

'Therefore, find the coordinates of point Q.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.39

'Using the intermediate value theorem\n(1) Prove that the equation \\( 3^{x}=2(x+1) \\) has at least one real solution in the range \ 1<x<2 \.\n(2) Let \\( f(x), g(x) \\) be continuous functions on the interval \ [a, b] \. If \\( f(a)>g(a) \\) and \\( f(b)<g(b) \\), show that the equation \\( f(x)=g(x) \\) has at least one real solution in the range \ a<x<b \.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.40

'Please translate the given text into multiple languages.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.41

'In Chapter 2, let there be constants a, b such that 100<a<b. Define x_n=( (a^n/b + b^n/a)^(1/n) ) (n=1,2,3,...). Find (1) Prove the inequality b^n < a(x_n)^n < 2b^n. (2) Find the limit lim n->∞ x_n.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.42

'Given equation 120(3) \\( \\left(\\log _{2} \\frac{x}{a}\\right)\\left(\\log _{2} \\frac{x}{b}\\right) \\left(ab=8, \\quad a=3, x=0\\right)\\)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.43

'Express the size of each set of numbers using inequality symbols.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.44

'Simplify the following expressions.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.45

'31 Logarithmic Functions'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.46

'(2) Simplify the following expressions:\n(a) \ \\log _{0.2} 125 \\n(b) \ \\log _{6} 12+\\log _{6} 3 \\n(c) \ \\log _{3} 18-\\log _{3} 2 \\n(d) \ 6 \\log _{2} \\sqrt[3]{10}-2 \\log _{2} 5 \\n(e) \ \\frac{1}{2} \\log _{10} \\frac{5}{6}+\\log _{10} \\sqrt{7.5}+\\frac{1}{2} \\log _{10} 1.6 \'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.47

'Values of expressions involving both exponential and logarithmic functions'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.48

'Common logarithm used in everyday life'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.49

'Limits of Sequences (5) ... using the squeeze theorem and binomial theorem'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.50

'Let fn(x) = (log x)^n (where n is an integer greater than or equal to 3). Here, log x is the natural logarithm. Find the values of n and x_0 when the curve y = fn(x) has a point of inflection (x_0, 8), and sketch the general shape of the curve (including concavity). [Job Development University]'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.51

'Prove that the equation 3^x=2(x+1) has at least one real solution in the range of 1<x<2.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.52

'Practice let n be a natural number greater than or equal to 2.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.53

'(2) Diverge'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.54

'Let n be a natural number. Show that the nth derivative f^{(n)}(x) of the function f(x)=x^{2} e^{x} can be expressed as f^{(n)}(x)=x^{2} e^{x}+2 n x e^{x}+a_{n} e^{x}, where a_{n} is a constant, and find the value of a_{n}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.55

'Find the values of the constants a and b such that y=e^{3x}(a \\sin 2x+b \\cos 2x) and y^{\\prime}=e^{3x} \\sin 2x hold true.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.56

'Throw n balls into 2n boxes. Assume each ball will be placed in one of the boxes with equal probability. Let p_{n} be the probability that each box contains at most 1 ball. Find the limit \ \\lim _{n \\rightarrow \\infty} \\frac{\\log p_{n}}{n} \.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.57

'For any real numbers c_{1}, c_{2}, the function f(x)=c_{1} e^{2x}+c_{2} e^{5x} satisfies the relationship f’’(x) − a f’(x)+b f(x)=0. [Keio University]'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.58

"Please provide the page containing 'Euler's formula'."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.59

'Calculate the number of digits of 3^n for a natural number n and find its limit.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.60

'Given constants \ a, b \ where \ 0 < a < b \. Let \\( x_{n}=\\left(\\frac{a^{n}}{b}+\\frac{b^{n}}{a}\\right)^{\\frac{1}{n}} \\), prove (1) the inequality \\( b^{n} < a\\left(x_{n}\\right)^{n} < 2b^{n} \\). (2) Find \ \\lim _{n \\rightarrow \\infty} x_{n} \.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.61

'Translate the given text of problem 309 in mathematics from Japanese'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.62

'102 (ウ) \ \\log \\frac{2}{\\sqrt{3}} \'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.63

'21 (1) \\( b_n = -(-3)^{n-1} \\)\n(2) \\( a_n=\\frac{3(-3)^{n-1}+1}{(-3)^{n-1}+1}, \\lim _{n \\rightarrow \\infty} a_{n}=3 \\)\n'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.64

'A point P moving on a number line is given by the velocity v at time t as v=t^{3}, and at t=0, P is at the origin. Find: \n(1) The coordinate x of P at t=2. \n(2) The distance s traveled by P from t=0 to t=2.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.65

'(3) log 2'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.66

'(1) Let a be a non-zero constant. For x≥0, find f(x)=lim(n→∞)(x^(2n+1)+(a-1)x^n-1)/(x^(2n)-ax^n-1).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.67

'Investigate the convergence and divergence of the following infinite geometric series, and find the sum if it converges.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.68

'Prove with mathematical induction that for any natural number n, the following inequality holds true for x>0: e^x > 1 + x + x^2/2! + x^3/3! + ... + x^n/n!'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.69

'91 square root of 3 times pi'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.70

'(3) \\frac{1}{2} \\log \\frac{4 e(e+2)}{3(e+1)^{2}}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.71

'(4) \\log \\frac{9}{8}'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.72

'Regarding the number e'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.73

'16\n(3)\n\\[\n\egin{array}{l} \ny^{\\prime}=e^{3 x} \\cdot(3 x)^{\\prime}=3 e^{3 x} \\\\\ny^{\\prime \\prime}=3 e^{3 x} \\cdot(3 x)^{\\prime}=9 e^{3 x} \\\\\n\\text { Therefore } \\quad y^{\\prime \\prime \\prime}=9 e^{3 x} \\cdot(3 x)^{\\prime}=27 e^{3 x}\n\\end{array}\n\\]'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.74

'Prove that the equation 3^x = 2(x+1) has at least one real solution in the range 1<x<2.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.75

'(2) \ \\log \\frac{3}{2} \'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.76

'Create a PR container. Pour water gently into this container at a rate of a per unit time. Let V represent the volume of water when the water height is h, the water radius is r, the water area is S, and the water volume is V after time t since pouring started. (1) Express V. (2) Express the rates of change dh/dt, dr/dt, dS/dt of h, r, S with respect to time t using a and h.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor
Updated: 12/12/2024